
Third-order contributions to the 8S7/2 → 6P7/2, 6P5/2 two-photon transitions of Eu2+ in

KMgF3

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys.: Condens. Matter 16 2773

(http://iopscience.iop.org/0953-8984/16/16/002)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 14:26

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/16/16
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 16 (2004) 2773–2784 PII: S0953-8984(04)75089-4

Third-order contributions to the 8S7/2 → 6P7/2, 6P5/2

two-photon transitions of Eu2+ in KMgF3

Ying Jiang1, Lixin Ning1, Shangda Xia1,2, Min Yin1 and Peter A Tanner2

1 Structure Research Laboratory, Academica Sinica, Department of Physics, University of
Science and Technology of China, Heifei, Anhui 230026, People’s Republic of China
2 Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue,
Kowloon, Hong Kong SAR, People’s Republic of China

Received 20 January 2004
Published 8 April 2004
Online at stacks.iop.org/JPhysCM/16/2773
DOI: 10.1088/0953-8984/16/16/002

Abstract
The line strengths in four polarization directions of the incident radiation of
the (8S7/2) → (6P5/2)�7, �8 and (8S7/2) → (6P7/2)�6, �7, �8 two photon
absorption (TPA) transitions of Eu2+ in the perovskite KMgF3 host have been
calculated using the third-order Judd–Pooler (JP) formalism. In general, the
calculated relative intensities are in good agreement with experiment, except
for the ratios between the linear and circular polarizations in the 8S7/2 → 6P7/2

transitions. In particular, the scalar operator term in the third-order spin–orbital
correction formula successfully explains nine 8S7/2 → 6P7/2 transitions with
different linear polarizations.

1. Introduction

The divalent europium ion Eu2+ has the ground electronic configuration 4f7 and the first
excited one 4f65d. The interconfigurational electronic transition 4f7 → 4f65d (labelled
4f → 5d hereafter) is parity allowed, while the intraconfigurational transition 4f7 → 4f7

(denoted 4f → 4f hereafter) is parity-forbidden, i.e. the electric dipole transition is not
allowed. Therefore, the optical absorption bands due to the latter transition are much weaker
than the absorption bands due to the former transition. Additionally, the high energy weak
4f → 4f absorption bands are close in energy to the intense parity-allowed 4f → 5d transition
bands [1, 2]. For that reason it is difficult to assign the high-lying excited states of the 4f7

configuration using one-photon spectroscopy. Two-photon excitation spectroscopy, however,
is a useful tool for the investigation of those high-lying levels of the 4f7 configuration, which
are located close to the levels of the 4f65d configuration, because the 4f → 4f two-photon
transition is parity allowed. In addition, two-photon spectroscopy has different polarization
properties compared with one-photon spectroscopy and is therefore a useful, complementary
technique.
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The development of two-photon spectroscopy of lanthanide compounds has been
characterized by an intensive interplay between theory and experiment, with successive
refinements becoming necessary. The theory of two-photon transitions was formulated by
Axe [3] using the conventional Judd–Ofelt (JO) closure approximation [4, 5] in second-
order theory, by coupling the two electric dipole operators into an effective operator acting
between same-parity initial and final states. Further developments were initiated by Judd
and Pooler (JP) [6], who added a matrix element of spin–orbit interaction Hso acting on
the intermediate 4fN−15d states |SMs L Ml〉 (in the numerator) and a corresponding averaged
energy difference (in the denominator) in constructing the two-photon transition amplitude
in which the initial and the terminal states have different spin multiplicity, i.e. so-called
third-order Hso correction terms were added. Following this approach, Downer [7, 8]
considered the crystal–field interaction Hcf instead of the spin–orbit interaction Hso acting
on the intermediate 5d electronic states (i.e. so-called third-order Hcf correction terms), and
the fourth-order correction terms (considering the crystal–field interaction Hcf and spin–orbit
interactions Hso acting on the intermediate 5d electronic states simultaneously) to explain
the two-photon transitions forbidden by SLJ selection rules for the Eu2+ ion in CaF2 and
SrF2.

Eu2+(4f7) is an attractive system for two-photon investigations because there is a wide
transparent window between the 8S7/2 ground state and the first excited state, 6P7/2 at
∼30 000 cm−1. There are several other reasons for our interest in this system, as follows.
First, the analysis is facilitated by the presence of an orbitally nondegenerate ground state,
which is not split by the crystal field. The configuration 4f7 has more than 3000 states,
and the most important intermediate configuration 4f65d has more than 30 000 states, so the
situation is intricate. Actually, the investigations of two-photon transitions of Eu2+ in CaF2

and SrF2 [8] have really shown a puzzle, which could not be explained by standard second-
order theory alone. Namely this comprises anomalous line-strength ratios and polarization
anisotropy of most of the experimental data. Notably, the energy levels of the excited 4f65d
configuration of Eu2+ are low-lying, so the denominator �E , which is the average energy
separation between the barycentres of the intermediate and ground configurations, used in
the JP theory, might present a problem in the calculation. Finally, the line strengths of two-
photon transitions are rather sensitive to the environment of the lanthanide ion. Francini
et al [9] have investigated the intraconfigurational 4f7 8S7/2 → 6P7/2 and 8S7/2 → 6P5/2

transitions of Eu2+ in KMgF3 by means of two-photon excitation spectroscopy. As is well-
known, the crystal–field effect for Eu2+ in KMgF3 is relatively small in comparison with
the hosts CaF2 and SrF2. Later, Francini et al [10] analysed the intensity and polarization
dependencies of 8S7/2 → 6P7/2,5/2 transitions in terms of second-order theory in which the
spin admixture was included in both of the initial and terminal states. Whereas the relative
intensities between the transition (8S7/2) → (6P5/2)�7 and the transition (8S7/2) → (6P5/2)�8

using various polarizations were satisfactorily interpreted, the second-order theory completely
failed in predicting the intensity distributions among the three (8S7/2) → (6P7/2)�6, �7, �8

transitions for various linear polarization directions, as well as the their intensity ratios for
circular and linear polarizations.

In this paper our intentions are to renew the two-photon absorption (TPA) intensity
calculation for Eu2+ ions doped into the cubic host KMgF3. By including the third-order
Judd–Pooler spin–orbit formalism [6], we have investigated the transition line strengths and
relative intensities of the (8S7/2) → (6P5/2)�7, �8 and (8S7/2) → (6P7/2)�6, �7, �8 TPA
transitions under various polarizations, including circular polarization. The calculated relative
intensities have then been compared with those observed in experiment and calculated in the
previous studies [9, 10].
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2. Judd–Pooler formalism

For the two-photon transitions under investigation, one term of the matrix element MJP

connecting the initial state |�iγi〉 to the final state |�fγf〉 can be expressed using the JP third-
order formalism [6],

MJP =
∑
m,n

〈�iγi|ε · D|m〉〈m|Hso|n〉〈n|ε · D|�fγf〉
�Em�En

(1)

where Hso is the spin–orbit operator, and the summation is over all the intermediate states |m〉
and |n〉.

According to electron paramagnetic resonance data [11] and previous calculations [12],
the crystal–field components of the 8S7/2 multiplet of the 4f7 configuration can be regarded
as degenerate. In the present cases, the TPA line strengths of transitions from 8S7/2 to states
|�fγf〉, can be expressed as

S(αi Ji, αf Jf�f ) =
∑
�i

∑
γiγf

|M(αi Ji�iγi → αf Jf�fγf)|2 (2)

where i and f represent the initial and final states, respectively, α = ηSL (η stands for any
other quantum numbers that are needed when the set SL J MJ fails to uniquely define the states
of the free ion Eu2+), and |�iγi〉 is the state transforming according to row γi of the irreducible
representation �i of the cubic point group. The sum over �i extends over all the irreducible
representations of the ground state 8S7/2. To simplify the calculation, Judd and Pooler applied
the JO closure approximation twice and coupled the two electric dipole operators and spin–
orbit operator into a single effective operator Heff . The matrix element of equation (1) then
becomes:

(�E−1
fd )

2〈�iγi|Heff|�fγf〉, (3)

where�Efd comes from�Em and�En in equation (1), and is approximated to be the energy
separation between the barycentres of the intermediate and ground configurations,but is usually
taken as the gap from the lowest state of the ground configuration to the excited configuration
barycentre.

Ceulemans and Vandenberghe [13] made some minor changes to the expression for the
effective operator derived by JP. The master expression for the spin–orbit part of the third-order
mechanism above consists of three parts, written as [13]

�E−2
fd Heff = −(2l + 1)(2l ′ + 1)〈nl|r |n′l ′〉2

(
l 1 l ′
0 0 0

)2

�E−2
ll′

×
[
−ξl(l(l + 1)(2l + 1))1/2

∑
t

{
1 l l ′
l 1 t

}
(εε)(0t) · (a+a)(0t)t(a+a)(11)0

+ ξl(2)−1/2(l(l + 1)(2l + 1))1/2
∑
t,k

{
1 l l ′
l 1 t

}{
t l l
l 1 k

}

× (−1)k+1(2k + 1)1/2(εε)(0t) · (a+a)(1k)t + ξl′ (2)−1/2(l ′(l ′ + 1)(2l ′ + 1))1/2

×
∑
t,k

{ 1 l l ′
1 l l ′
t k 1

}
× (−1)k+1(2k + 1)1/2(εε)(0t) · (a+a)(1k)t

]
(4)

where l and l ′ refer to the 4f and 5d orbitals, respectively. The symbols a+ and a, the
second-quantization operators, create and annihilate the 4l + 2 states of an l-electron (l = 3),
respectively. �Ell′ (l ′ = 2) is exactly the�Efd above. The electric vector of the radiation field
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is written as the tensor ε(01). The two labels in the brackets (01) identify the rank of the tensor
in spin and orbit space, respectively. (εε)(0t) is a coupling tensor of two vectors ε(01), where
t = 0, 1, 2. For two photons of the same source, a coupling of two electric dipoles yields a
totally symmetric (t = 0) and a quadrupolar term (t = 2) while the dipolar term (t = 1) is
nonexistent. ξl and ξl′ are spin–orbit parameters for the l and l ′ electron, respectively.

Clearly, the electronic operator in the first term of equation (4) consists of a simple product
of spin–orbit coupling operator (a+a)(11)0 and the operator (a+a)(0t)t acting on the states of
the l-shell. In the remaining two terms, the spin–orbit coupling operator and the two-photon
electric dipole operator are merged into an effective operator of the form (a+a)(1k)t . The final
term takes into account the effect of spin–orbit coupling in the l ′-shell. The numerical values
of 3- j , 6- j symbols up to a certain rank are available in [14]. All other 3- j , 6- j and 9- j
symbols can be calculated from relations given in [15].

In general, the scalar product of two tensors is defined as [16]:

T (t) · U (t) =
∑

m

(−1)m T (t)
m U (t)

−m . (5)

All terms in equation (4) are expressed as scalar products of an electronic part and a physical
part [17]. This physical part involves the coupling of the two ε-tensors. In the following, we
will calculate these two parts separately and combine them to yield the total transition matrix
element.

2.1. Electronic part

As described above, the change of electronic state is caused by the one-electron operators
(a+a)(0t)t(a+a)(11)0 and (a+a)(1k)t in equation (4). The matrix elements of these operators
constitute the electronic part of the total transition matrix element. Before considering these
matrix elements in some detail, the actual nature of the ground and final states must be
examined.

Quantitative calculations of Eu2+ free-ion energy levels using Reid’s f-shell empirical
programs and the input parameters reported by Downer [8] indicate that:

|[8S7/2]〉 = 0.99|8S7/2〉 + 0.16|6P7/2〉
|[6P7/2]〉 = −0.89|6P7/2〉 + 0.39|6D7/2〉 + 0.17|8S7/2〉
|[6P5/2]〉 = −0.91|6P5/2〉 + 0.38|6D5/2〉

(6)

where the terms with coefficient less than 0.1 are ignored, since their contributions to the
wavefunction are less than 1%. At first, we will first approximately (in scheme A) calculate the
transitions between initial and final states being normalized pure Russell–Saunders multiplets,
i.e. pure multiplets 8S7/2, 6P7/2 and 6P5/2. In this approximation, only the third-order transition
element MJP in (1) is nonzero, since the second-order mechanism is spin-forbidden for TPA
8S7/2 → 6P7/2 and 8S7/2 → 6P5/2. Then, the contributions from spin–orbit admixture of
multiplets in the equation (6) will be commented upon in scheme B.

The (8S7/2)�6, �7, �8, (6P7/2)�6, �7, �8, and (6P5/2)�7, �8 wavefunctions under
consideration are easily projected out of the J = 7/2, 5/2 manifolds using the cubic subduction
relations. Following Griffith [18], one has

|8S7/2(
6P7/2), �6α

′〉 =
√

5√
12

∣∣∣∣7

2
,−7

2

〉
+

√
7√

12

∣∣∣∣7

2
,

1

2

〉

|8S7/2(
6P7/2), �6β

′〉 = −
√

5√
12

∣∣∣∣7

2
,

7

2

〉
−

√
7√

12

∣∣∣∣7

2
,−1

2

〉

|8S7/2(
6P7/2), �7α

′′〉 =
√

3

2

∣∣∣∣7

2
,

5

2

〉
− 1

2

∣∣∣∣7

2
,−3

2

〉
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|8S7/2(
6P7/2), �7β

′′〉 = −
√

3

2

∣∣∣∣7

2
,−5

2

〉
+

1

2

∣∣∣∣7

2
,

3

2

〉

|8S7/2(
6P7/2), �8κ〉 = 1

2

∣∣∣∣7

2
,−5

2

〉
+

√
3

2

∣∣∣∣7

2
,

3

2

〉

|8S7/2(
6P7/2), �8 λ〉 =

√
7√

12

∣∣∣∣7

2
,−7

2

〉
−

√
5√

12

∣∣∣∣7

2
,

1

2

〉

|8S7/2(
6P7/2), �8µ〉 =

√
7√

12

∣∣∣∣7

2
,

7

2

〉
−

√
5√

12

∣∣∣∣7

2
,−1

2

〉
(7)

|8S7/2(
6P7/2), �8ν〉 = 1

2

∣∣∣∣7

2
,

5

2

〉
+

√
3

2

∣∣∣∣7

2
,−3

2

〉

|6P5/2, �7α
′′〉 = 1√

6

∣∣∣∣5

2
,

5

2

〉
−

√
5√
6

∣∣∣∣5

2
,−3

2

〉

|6P5/2, �7β
′′〉 = 1√

6

∣∣∣∣5

2
,−5

2

〉
−

√
5√
6

∣∣∣∣5

2
,

3

2

〉

|6P5/2, �8κ〉 = − 1√
6

∣∣∣∣5

2
,

3

2

〉
−

√
5√
6

∣∣∣∣5

2
,−5

2

〉

|6P5/2, �8λ〉 =
∣∣∣∣5

2
,

1

2

〉

|6P5/2, �8µ〉 = −
∣∣∣∣5

2
,−1

2

〉

|6P5/2, �8ν〉 =
√

5√
6

∣∣∣∣5

2
,

5

2

〉
+

1√
6

∣∣∣∣5

2
,−3

2

〉
.

These expressions, in addition to equations (3)–(5), allow one to relate the (8S7/2)�6, �7,
�8 → (6P7/2)�6, �7, �8 and (8S7/2)�6, �7, �8 → (6P5/2)�7, �8 transition matrix elements
M(αi Ji�iγi → αf Jf�fγf) in equation (2) to the standard M J → MJ ′ transition elements in
the following equations (8) and (11). Firstly, equation (8) is the general form of the matrix
element of the one-electron operator (a+a)(κk)t given by Judd [16, 19]:

〈l NηSL J MJ |(a+a)(κk)t
−m |l Nη′S′L ′ J ′M ′

J 〉 = −(−1)J−MJ

(
J t J ′

−MJ −m MJ ′

)

×
{ S S′ κ

L L ′ k
J J ′ t

}
([J ][J ′][t])

1
2 〈l NηSL||W (κk)||l Nη′S′L ′〉 (8)

where (a+a)(κk)t represents the second-quantized form of tensor operator −W (κk)t , which is a
sum of single particle operators. As usual, the degeneracy numbers such as 2J + 1 are written
as [J ].

Secondly, the reduced matrix element of the double tensor W (κk) can be calculated as [16]:

〈l NηSL||W (κk)||l Nη′S′L ′〉 = N{[S][κ][S′][L][k][L ′]}1/2

×
∑
ηS L

〈ηSL{|ηS L〉〈ηS L|}η′S′L ′〉(−1)S+s+S+κ+L+l+L+k

×
{

S κ S′
s S s

} {
L k L ′
l L l

}
(9)
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Table 1. The doubly reduced matrix elements 〈 f 7 8S||W (κk)|| f 7η′S′L ′〉 for various | f 7η′S′L ′〉
and (κ, k) used in the calculations.

(κ, k)

η′S′L ′ (0, 0) (1, 1) (1, 2)

6P 0 2
√

6 0
6D 0 0 2

√
6

8S 2
√

7 0 0

where ηS L is defined as the parentage states of the initial and final states, and 〈ηSL{|ηS L〉
and 〈ηS L|}η′S′L ′〉 are the fractional parent coefficients which are available in [20]. For those
W (κk) with κ = 0, the reduced matrix elements can be calculated in a alternative way:

〈l NηSL||W (0k)||l Nη′S′L ′〉 = δSS′[s]−1/2{[S][k]}1/2〈l NηSL||U (k)||l Nη′S′ L ′〉. (10)

In table 1, the values of the reduced matrix elements, which are calculated from equations (9),
(10) and used in the calculations of this paper, are listed.

Finally, to evaluate matrix elements of the electronic operator (a+a)(0t)t(a+a)(11)0, which
appears in the first term of the master expression (4), the following relation is used:

〈ψ|(a+a)(0t)t(a+a)(11)0|ψ ′〉 =
∑
ψ ′′

〈ψ|(a+a)(0t)t |ψ ′′〉 〈ψ ′′ |(a+a)(11)0|ψ ′〉 (11)

where, with the initial state ψ = 8S7/2, the correspondingψ ′′ is nonexistent when ψ ′ is 6P5/2

(or 6D5/2, 6D7/2), while ψ ′′ is 8S7/2 when ψ ′ is 6P7/2, in which only t = 0 is allowed.
From the above formulae (8)–(10), several selection rules in the second and the third terms

of (4), become apparent. For the transition 8S → 6P, only the terms with k = 1 are permitted,
and for the transition 8S → 6D, only the terms with k = 2 are permitted, while κ = 1 links
S = 7/2 and 5/2. In addition, while both t = 0, 2 are allowed for 8S7/2 → 6P7/2, only t = 2
is allowed for the transitions 8S7/2 → 6P5/2, 8S7/2 → 6D5/2 and 8S7/2 → 6D7/2, which can be
derived from the property of 3- j and 9- j symbols in equation (8).

2.2. Physical part

The coupling tensor (εε)(0t) in (4) is the physical part. The tensor (εε)(0t)
0,m is defined as follows:

(εε)
(0t)
0,m =

∑
m1,m2

〈1m11m2|11tm〉ε(01)
0,m1

ε
(01)
0,m2

. (12)

For the transitions under investigation, m1 and m2 are only allowed to be ±1 (and not 0), since
the experimental spectra were obtained with the excitation beam propagating along the [001]
crystal axis [9, 10]. Thus, the allowed values of m are 0 and ±2, and the following relations
are used in the calculation:

(εε)
(00)
0,0 = − 1√

3
(ε
(01)
0,0 ε

(01)
0,0 − ε

(01)
0,1 ε

(01)
0,−1 − ε

(01)
0,−1ε

(01)
0,1 )

(εε)
(02)
0,0 = 1√

6
(2ε(01)

0,0 ε
(01)
0,0 + ε(01)

0,1 ε
(01)
0,−1 + ε(01)

0,−1ε
(01)
0,1 )

(εε)
(02)
0,2 = ε

(01)
0,1 ε

(01)
0,1

(εε)
(02)
0,−2 = ε

(01)
0,−1ε

(01)
0,−1.

(13)

In our work, the TPA transition line strengths are obtained in circular polarizations, where
m1 = m2 = 1 or −1, so that only the last two formulae of (13) with t = 2, m = 2 or −2 are
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involved, and in the linear polarizations of θ = 0◦, 45◦ and 90◦, where θ is the angle between
the [100] crystal axis and the unit electric vector of the excitation beam propagating along the
[001] crystal axis. Therefore, in addition to ε(01)

0,0 = 0, the following relationships between the
electric dipole vectors and the angle θ are used:

ε
(01)
0,1 = − ε√

2
[cos θ + i sin θ ]

ε
(01)
0,−1 = ε√

2
[cos θ − i sin θ ].

(14)

With the above expressions and equation (4), the TPA transition line strengths using linear and
circular polarizations can be calculated, and the results are displayed in tables 2 and 3.

3. Results and discussion

3.1. 8S7/2 → (6P5/2)�7, �8 transitions

The calculated absolute transition line strengths of the 8S7/2 → (6P5/2)�7, �8 TPA transitions
are listed in table 2. These results are separated into two groups A and B, corresponding
to two types of different wavefunctions (i.e. schemes A and B mentioned in section 2.1)
used for the initial and final states, and for each group the experimental relative intensities
are also listed for comparison. As indicated in equation (6), the energy level calculations
reveal that 8S7/2 and 6P5/2 show some deviations from pure Russell–Saunders multiplets, so in
scheme B we have performed the calculation with these admixtures taken into account. This
gives rise to complications, since several more second-order and third-order contributions
have to be calculated: namely 6P7/2 → 6P5/2 and 6P7/2 → 6D5/2 in second order and
8S7/2 → 6D5/2 in third order. We have only calculated second-order contributions for the
spin-allowed 6P7/2 → 6P5/2 and 6P7/2 → 6D5/2 processes, since in these cases the second-
order contributions are much greater than the third-order contributions. The formula (3.4)
in [13]:

M ′
JP = (6

√
70)〈4f |r |5d〉2E−1

fd (εε)
(02) · 〈i|U (2)|f〉 (15)

has been used to calculate the second-order contributions, and for the third-order contributions
the method described in the above section has been used.

The pure second-order calculated results in group B produce reasonable relative intensities
compared with the experimental data, as can be seen from table 2. It is also shown that in
the third-order approximation, the calculated absolute line strengths in group B are a little
larger in comparison with group A, and are also larger in comparison with the second-order
approximate ones of group B when ξf/�Efd = 0.03 [8] and ξd/ξf = 0.60 [22] are used.
However, relative intensities between the two different transitions are surprisingly similar.
As shown in table 2, the calculated ratio between the TPA intensities of 8S7/2 → �8 and
8S7/2 → �7 for any polarization (there are four kinds of polarization in all) in the third-order
approximative calculation in scheme B is in good agreement with the experimental results, and
is basically consistent with [10] except for θ = 45◦. This means that the third-order correction
is not very important for the relative intensities of the 8S7/2 → 6P5/2 transition. Besides,
when the line strength of circular and linear polarization for the 6P5/2 manifold is compared,
our calculated ratio is around 1.5 (in scheme A or B), which agrees with the corresponding
result in [10], and is not very different from the experimental value of 2.1. In addition, for
the 8S7/2 → �8 transition we can obtain the order of S(θ = 0◦) < S(θ = 45◦) < S(circ.),
which is in agreement with experimental observations [10]. For the 8S7/2 → �7 transition, the
order of S(θ = 45◦) ∼= S (θ = 0◦) < S(circ.) is obtained, which is also in agreement with the
experimental observations.
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Table 2. Calculated and observed intensities for the 8S7/2 → 6P5/2(�7, �8) TPA transitions of KMgF3:Eu2+.

Relative intensities
Calculatedc,e

Calculated transition Calculatedc,f

line strengthc (Calculatedb , Observeda,b)
Final Energy
state (cm−1)a θ = 0◦ θ = 45◦ θ = 90◦ Circular θ = 0◦ θ = 45◦ θ = 90◦ Circular

Ad (6P5/2)�8 28 267.0 1.711 1.936 1.711 2.792 1.52 2.15 1.52 1.91
(1.29, 1.37) (2.60, 2.10) (—,1.56) (1.91, 1.80)

(6P5/2)�7 28 270.5 1.126 0.901 1.126 1.464 1.00 1.00 1.00 1.00
(1.00, 1.00) (1.00, 1.00) (—, 1.00) (1.00, 1.00)

B (6P5/2)�8 28 267.0 e 1.287 1.456 1.287 2.099 1.52 2.15 1.52 1.91
f 1.901 2.151 1.901 3.102 1.52 2.15 1.52 1.91

(1.29, 1.37) (2.60, 2.10) (—, 1.56) (1.91, 1.80)
(6P5/2)�7 28 270.5 e 0.847 0.677 0.847 1.101 1.00 1.00 1.00 1.00

f 1.251 1.001 1.251 1.626 1.00 1.00 1.00 1.00
(1.00, 1.00) (1.00, 1.00) (—, 1.00) (1.00, 1.00)

a From [9].
b From [10].
c From this work.
d In row A, the pure Russell–Saunders multiplets were used for the initial and final states and the transition line strengths are in units of
2.54 × 1045 × [5.13 × 10−2ξf − 2.28 × 10−2ξd]2�E−4

fd 〈f|r|d〉4 m4 J−2.
e For the figures in italics in row B, the multiplets with spin–orbit admixtures were used as the initial and final states in the pure second-order
calculations and the transition line strengths are in units of 2.027 × 1039�E−2

fd 〈f|r|d〉4 m4 J−2.
f For the nonitalicized figures in row B, the multiplets with spin–orbit admixtures were used as the initial and final states in the third-
order approximate calculations and the transition line strengths are in units of 2.54 × 1045 × [6 × 10−4�Efd + (4.71 × 10−2ξf − 1.85 ×
10−2ξd)]2�E−4

fd 〈f|r|d〉4 m4 J−2.
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Table 3. Calculated and observed intensities for the 8S7/2 → 6P7/2(�6, �7, �8) TPA transitions of KMgF3:Eu2+.

Relative intensities
Calculatedc,e

Calculated transition Calculatedc,f

line strengthc (Observeda,b)g

Final Energy
state (cm−1)a θ = 0◦ θ = 45◦ θ = 90◦ Circular θ = 0◦ θ = 45◦ θ = 90◦ Circular

Ad (6P7/2)�6 27 840.3 23.646 23.662 23.646 0.0184 1.00 1.00 1.00 1.296
(0.78) (0.78) (0.78) (0.78)

(6P7/2)�8 27 845.8 47.624 47.343 47.624 0.0340 2.01 2.00 2.01 2.394
(1.85) (1.85) (1.85) (1.85)

(6P7/2)�7 27 847.3 23.629 23.664 23.629 0.0142 1.00 1.00 1.00 1.000
(1.00) (1.00) (1.00) (1.00)

B (6P7/2)�6 27 840.3 e 0.0298 0.0149 0.0298 0.0273 2.33 0.69 2.33 1.258
f 17.730 17.694 17.730 0.0937 1.01 1.00 1.01 1.191

(0.78) (0.78) (0.78) (0.78)
(6P7/2)�8 27 845.8 e 0.0260 0.0349 0.0260 0.0497 2.03 1.61 2.03 2.290

f 35.633 35.404 35.633 0.1778 2.02 2.00 2.02 2.259
(1.85) (1.85) (1.85) (1.85)

(6P7/2)�7 27 847.3 e 0.0128 0.0217 0.0128 0.0217 1.00 1.00 1.00 1.000
f 17.635 17.712 17.635 0.0787 1.00 1.00 1.00 1.000

(1.00) (1.00) (1.00) (1.00)

a From [9]. b From [10].
c From this work. The transition line strengths are in the same unit of 2.54 × 1045ξ2

f �E−4
fd 〈f|r|d〉4 m4 J−2 for rows A and B. ξd/ξf = 0.60 [22]. For row B, the

value of ξf/�Efd was set to 0.03 [8].
d The pure Russell–Saunders multiplets were used for the initial and final states in the calculations.
e The multiplets with spin–orbit admixtures were used as the initial and final states in the pure second-order calculation for the italicized figures.
f The multiplets with spin–orbit admixtures were used as the initial and final states in the third-order approximate calculations for the nonitalicized figures.
g For the transition 8S7/2 → 6P7/2(�6,�7,�8), the ratio of the three components is kept constant (0.78:1.85:1.00) [9] when the polarization changes from linear to
circular [10].
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Table 4. The values of matrix elements of three terms in (4) for the 8S7/2 → (6P7/2)�6 transition
(θ = 0◦).

The first terma The second terma The third termb

〈8S7/2�6α
′| → |6P7/2�6α

′〉 −√
14

√
2/

√
7 −2

√
2/(3

√
7)

〈8S7/2�8λ| → |6P7/2�6α
′〉 0 −3/(14

√
10)

√
2/(21

√
5)

〈8S7/2�8ν| → |6P7/2�6α
′〉 0 3

√
3/(14

√
10) −√

2/(7
√

15)

〈8S7/2�6β
′| → |6P7/2�6β

′〉 −√
14

√
2/

√
7 −2

√
2/(3

√
7)

〈8S7/2�8κ| → |6P7/2�6β
′〉 0 −3

√
3/(14

√
10)

√
2/(7

√
15)

〈8S7/2�8µ| → |6P7/2�6β
′〉 0 3/(14

√
10) −√

2/(21
√

5)

a In units of 5.04 × 1022 × 〈f|r|d〉2�E−2
ll′ ξf m2 J−1.

b In units of 5.04 × 1022 × 〈f|r|d〉2�E−2
ll′ ξd m2 J−1.

3.2. 8S7/2 → (6P7/2)�6, �7, �8 transitions

The calculated intensities for the three transitions 8S7/2 → (6P7/2)�6, �7, �8, are shown
in table 3. As an example, the values of three terms in the matrix elements of the third-
order equation (4) are listed in table 4 for the 8S7/2 → (6P7/2)�6 transition (when θ = 0).
From this, we can see that the contribution of the first term of (4) is most dominant and the
contributions from the first and third terms are opposite to the second term. As mentioned
following equation (11), for 8S7/2 → 6P7/2 only when t = 0, the first term of (4) has a
nonzero contribution (therefore it does not contribute to the circular polarization). If we are
to retain only this term in scheme A, we would then predict that for linear polarization the
TPA intensity to any Stark components�iγi of 6P7/2 should be equal, since the matrix element
〈ψ|(a+a)(00)0|ψ ′′〉 on the right-hand side of (11), which is proportional to:

(−1)J−MJ

(
J 0 J

−MJ 0 M ′′
J

)
= (2J + 1)−1/2δMJ ′′ MJ (16)

is independent of MJ (as is the element 〈ψ ′′|(a+a)(11)0|ψ ′〉). Therefore the relative intensity
between different final levels should be proportional to their degeneracy ratio (�6:�7:�8 =
1:1:2). Furthermore, none of the Stark component intensities will depend upon the direction
of polarization, because ε(01)

0,1 · ε(01)
0,−1 is independent of θ (see equation (14)). So, as shown

in row A of table 3, we obtain the ratios of the transition intensities between these three
components �6, �7, �8, which are basically independent of the polarization angle θ and
almost proportional to the degeneracy of the final state. These findings are consistent with
the experimental observations. From table 3, the calculated results of scheme B still keep the
above trends although the calculated absolute intensities are smaller. Then our calculation
solves the contradiction left in [10], which declared a complete failure to explain the above
observation for linear polarization, as can be seen in detail when we compare the pure second-
order calculated results in scheme B with the observed ones from table 3. The key effect of
the first term of equation (4) in solving this contradiction is evident.

Our calculated relative intensities for circular polarization are basically consistent with
the calculated and experimental values in [10]. However, regarding the comparison with
linear polarization we fail to explain the value of S(linear)/S(circular) which is about 8 from
experiment while our calculated value is 1400 in scheme A. In fact, the same discrepancies
are found in the work [21] for Eu2+ in both the CaF2 and SrF2 host lattices.

However, in our scheme B calculation, the calculated value of S(linear)/S(circular) is
reduced to about 200 when ξf/�Efd = 0.03 and ξd/ξf = 0.60 are included, which is much
improved compared with the value 1400. This is because in scheme B, several second order
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6P7/2 → 6D7/2, 6P7/2 → 6P7/2 and 8S7/2 → 8S7/2 and third order 8S7/2 → 6D7/2 and
6P7/2 → 8S7/2 contributions are included. The calculated results are listed in row B of
table 3. Primarily because the contributions from 6P7/2 → 6D7/2 and 8S7/2 → 6D7/2 of
linear polarization are opposite to those from the first (and third) terms in (4) in scheme
A, and the coefficients of initial and final states are no longer ‘1’, the absolute transition line
strengths in scheme B are less than those in scheme A. However, for the circular polarization the
results are opposite, since the second-order 6P7/2 → 6D7/2 and the third-order 8S7/2 → 6D7/2

transitions themselves make dominant contributions in scheme B for the circular polarization.
In the following, we choose the 〈[8S7/2]�7α

′′| → |[6P7/2]�6α
′〉 transition as an example. In

scheme B, the matrix element of this transition at circular polarization is given as:

M ′
JP =

(
0.0941 + 0.0017

�Efd

ξf
− 0.0264

ξd

ξf

)
ξf 〈f |r |d〉2�E−2

fd , (17)

whereas for the pure Russell–Saunders multiplets used in scheme A, the corresponding matrix
element is given as

MJP = (−0.0678ξf + 0.03ξd)〈f |r |d〉2�E−2
fd . (18)

It is obvious that the transition line strength M ′2
JP is larger than M2

JP, when ξf/�Efd = 0.03 [8]
and ξd/ξf = 0.60 [22] are used. From (18) we can also see that the transition line strength
M ′2

JP (in units of 2.54 × 1045 m4 J−2) will increase along with the increase of �Efd/ξf , which
comes mainly from the second-order contribution of 6P7/2 → 6D7/2, and this is not included
in scheme A.

It is noticed that the observed intensities could be fit by reducing ξf/�Efd artificially to
about 0.005, but such a low value cannot be justified physically. At the same time, M ′2

JP (or
M2

JP) will increase when the value of ξd/ξf is reduced but the effect is not distinct.
The most promising possibility for the discrepancy is that the closure approximation,

which has been fundamental to the derivation of all operators so far, is no longer valid for
this divalent ion, since the energy levels of the excited 4f65d configuration of Eu2+ are low-
lying [23–25]. In addition, the influence of intermediate configurations other than 4f65d is
also an unconsidered factor.

Finally, it is pointed out that the system under investigation does have the experimental
disadvantages that as well as cubic sites, the Eu2+ ion also substitutes at trigonal sites (as in
Cs2NaLaCl6 [26]). Although these sites are in the minority, spectral features are present due to
them in both the one- and two-photon spectra. Notably, the emission was monitored at 359 nm
in the two-photon excitation spectra [9, 10] and energy transfer between the cubic and trigonal
sites could lead to a change in TP transition intensity ratios.

4. Conclusions

Reid et al [27] have asserted that the many-body perturbative and JP method of calculation
are equivalent in the calculation of two-photon transition line strengths. The present work
has taken the 8S7/2 → 6P7/2, 6P5/2 transitions of Eu2+ in the host KMgF3 as a case to study.
Using the third-order spin-orbital interaction correction, we can satisfactorily interpret these
two transitions, especially the intensities of linear polarization TPA transition 8S7/2 → 6P7/2,
to successfully solve the discrepancy presented in [10]. However, the discrepancy between the
calculated ratio of S(linear)/S(circular)with experimental observations still remains unless an
increase of the �Efd/ξf and ξf/ξd parameters is made.
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